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A CONTINUITY PROPERTY 
OF MULTIVARIATE LAGRANGE INTERPOLATION 

THOMAS BLOOM AND JEAN-PAUL CALVI 

ABSTRACT. Let {St} be a sequence of interpolation schemes in R' of degree d 
(i.e. for each St one has unique interpolation by a polynomial of total degree 
< d) and total order < 1. Suppose that the points of St tend to 0 E R' as t -- 

0o and the Lagrange-Hermite interpolants, Hs,, satisfy limt-o Hst (X a) = 0 

for all monomials x't with 1a1 = d + 1. Theorem: limt ,0 Hst (f) = T d(f) 

for all functions f of class Cl-1 in a neighborhood of 0. (Here Td(f) denotes 
the Taylor series of f at 0 to order d.) 

Specific examples are given to show the optimality of this result. 

1. INTRODUCTION 

Let 0 be an open neighborhood of the origin in R, a := (a0, ..., ad) C Qd+1 and 
f a function of class Cd+l on 0. As is well known, if H[a, . . . , ad] (f) denotes the 
Lagrange-Hermite interpolation polynomial with respect to the points ao, ... , ad 

(with the usual convention when some points coincide), then 

lim H[a0, . .. , ad] = Tdf 

where Tdf denotes the d-th Taylor polynomial of f at the origin. This follows quite 
easily from the Newton representation formula for the interpolating polynomial, 
that is 

d 

H[a, . .., a d](f, x) = f (a?) + , f[a?, ... ., a'] (f, x) (x - a) . .. (x -ai-1) 
i= 1 

via the Hermite-Genocchi formula for the divided differences, namely 

f[a0,... ,ai]J d(i)(ao+, tj aj)dm(t) 

j=1 

where dm denotes Lebesgue measure on the simplex 

Ai = {(tj)l<j<i: tj > O. Etj < 1}. 
j=1 

More generally, for fixed f of class Cd+k, one can prove similarly that the function 
a -* H[a0, ... , ad](f) is of class Ck on 0d+1 (see also [N, Th. 2.5]). 
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The main purpose of this note is to study such continuity properties for multi- 
variate Lagrange-Hermite interpolation. 

For x, y C Rh we write [xl En [ 1xi I and (x, y) :Enzyi. The length of 
an n-multi-index a is denoted by jal, that is ja = EnU ai. 

pd = pd ((Rn) is the space of polynomials of n real variables of degree at most d, 

pn := Ud>O nd is endowed with the norm 

[[PI loo := max Ica 
jal~d 

where P Z E~al<d C aXa, Xa being the polynomial function x -xa := x1 ... xat^. 

The functions x -* xi are simply denoted by Xi. 
For a sufficiently differentiable function f, the partial derivatives are written as 

Daf = o..f lx .xct 

We now define the multivariate Lagrange-Hermite interpolation polynomial (for 
general discussion, see [L]). 

Let al,...,ak be k points in RTn and let Si (i = 1,..., k) be k directed sets of 

n-multi-indices of length not exceeding d such that ZE=l #Si = T(d, r). Here #Si 

is the cardinality of Si, T(d, n) := (n d) is the dimension of the space Pd and that 

Si is directed means that for every a c Si and every /3 < a (i.e., aj < /3d for each 
j) we have /3 E Si. 

We say that 

S = {(a, Si), .. ., (ak, Sk)} 

is an interpolation scheme of degree d if, for every function f defined, and with 

appropriate derivatives at the points az, there exists a unique polynomial P C 

such that 

DaP(az) = Daf(ai), a C Si; i = 1,...,k. 

The polynomial P is denoted by Hs(f) and the points ai are sometimes referred 
to as nodes. 

An interpolation scheme consisting of T := T(d, n) points (so that #Si = 1 

for each i) is called a unisolvent array of degree d, the corresponding interpolating 

polynomial is simply called the Lagrange interpolation polynomial of f at S. It is 

usually denoted by Ls(f). Note that S = {al, ... , a"} is unisolvent of degree d if 

and only if it is not included in the zero set of a polynomial of degree not greater 
than d. Equivalently, 

det(eg(ai)) 7& 0, 

where eg (x) (1 < ,u < T) are the monomials of degree < d ordered lexicographically. 
We shall use the notation VDM(a1 , a 2, ... , al) for det(eg(a)) where VDM stands 
for Vandermonde. In this setting, the Lagrange formula is then 

Ls(f) = f(ai )ldi(x), 

z= 1 

where 1di (or if necessary lS) is the Lagrange fundamental polynomial for a' defined 

by ldi(ai) = 1 if j = i and 0 otherwise (j < T), that is 

idi(Z) 
VDM(a1,... ,a ,x,a , ,a/) (1 <i<T). 

ld~)-VDM(al,... ,ailai a+l, ...a 
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For specific examples of unisolvent arrays see [LP] and [Bo]. 
Tho Taylor polynomial to order d at a, denoted Tadf is another example of a 

Lagrange-Hermite interpolation polynomial. 
We can now state the general problem that is of interest in the multivariate 

context. 

Problem 1.1. Let St, t = 1, 2, ..., be a sequence of interpolation schemes of degree 
d whose points tend to 0 as t -* oc and f a function sufficiently differentiable in 
a neighbourhood of 0. Under what conditions is it true that HS, (f) converges to 
Tdf (- T ~df) in 'Pd as t approaches oo? 

Example 1.2 below shows that, in contrast to the one-variable case, smoothness 
conditions on f do not, in general, guarantee a positive answer to 1.1. 

Example 1.2. Let S = {(0, 0), (u, v), (w, O)}. It is a unisolvent array of degree 1 
in R2 whenever vw :& 0. We have Ls(x2' x) = wx1 _ u(w u)x2 If we take a, b, c > 0 1 ~~~~V 
with c > a, b > 2a and u = ut = t-a, v = Vt = t-b, w = Wt = t-', one sees that 
the coefficient of x2 in Lst (x1, x) tends to 0o as t -> oo. 

The paper is organized as follows. 
In section 2 we briefly collect some earlier results related to 1.1. 
Section 3 contains our main theorem which provides a criterion of different na- 

ture. 
Most of the calculations are postponed to section 4 where a quantitative version 

of the main theorem, using somewhat more technical tools, is presented. 
The results are illustrated by examples in the final section. 

2. EARLIER RESULTS AND BASIC CRITERIA 

The following proposition is an immediate consequence of Taylor's Theorem. Its 
proof will be omitted. To simplify matters, we state it only for Lagrange interpo- 
lation and unisolvent arrays. 

Proposition 2.1. Let St = {alt,... I a7t} be a sequence of unisolvent arrays of 
degree d in Rh. We write l ' for ld and Lt for Lst. If for 1 < i < T we have 

(2.1) lim la it id+1 i ildi 

' 
t 

to0oilo 
=0 

then for every function f of class Cd+1 in a neighborhood of 0, 

Ltf *Tdf, too. 

Even in the one-variable case, (2.1) is sufficient but not necessary for the con- 
clusion of Proposition 2.1 to hold. It can however be applied to some interesting 
sequences of arrays. They are constructed as follows. Let S = {ai,... , a7"} be a 
unisolvent array of degree d in R' and let At be a sequence of linear automorphisms 
of Rh. Then St = At(S) := {At(a1), .. ., At(a7 )} is again unisolvent. 

Corollary 2.2. Assume that JlAtlld+lIAT-lid -4 0 as t -4 o0, where I11 is any 
matrix norm. Then Lstf , T'df for every f of class Cd+1 in a neighborhood of 0. 

Proof. First we verify easily that 1di = ldi o A-1, therefore if 1di(x) =Elad 9, 

it follows that 

IIltldloo ? [lllloo E I JXa o A-1 | | 
0 < S Ad 
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But a computation shows that 

IIX' o At- 11K = O(AlIA 11"aI) = O(IHA-lIId). 

The last equality holds since, by the hypothesis, we necessarily have 1IAtII-1 > 1 
for t large. We deduce that 

lait Id+II. diIIfco = O(IIAtlId+l IIA-'IId) _ 0, 

which shows that the condition (2.1) of Proposition 2.1 is satisfied. E 

Coatmelec, [Co, Th 11.2.5], first investigated conditions on such sequences of 
unisolvent arrays. He gave a different but rather technical condition which is 
however proved to be satisfied when the At are scalings by ratio Pt (limtO,0 Pt = 0) 
composed with a rotation Rt that ensures convergence to the Taylor polynomial 
for functions of class Cd. 

Corollary 2.2. is implied by the results of a paper by Ciarlet and Raviart, [CR], 
where one also finds a nice geometric property that implies (2.1). Let us just state 
it in case d = 1, (2.1) holds if the quotient of the circumradius and the innerradius 
of the simplex with vertices At(ai), i = 1,... ,n + 1, remains bounded as t -* oc 
which means, in other words ,that the simplex of vertices the nodes of St does not 
become more and more flat. 

The following example shows that there exist sequences (At) that work for every 
function of class Cd+1 but not, in general, for functions only of class Cd. 

Example 2.3. We take 

St = {(0, 0), (1/t2, 1/t3), (2/t2, 0)} = At(S) 
with S = {(0, 0), (1, 0), (0, 1) } . Using the matrix norm given by the maximum of 
the absolute value of the coefficients, we get 

At ( 1/t2 2/t2) . llAtll = 2/t2, I IAT1I I = t3 

so that 

IlAt 12IIA-111 = 4/t 

and by 2.2, Lst (f) -T' (f ) for every function f of class C2. However, the function 
f defined by f (x) - X3/2 if x > 0 and 0 otherwise, is of class C' on R 2 while 

LSt( Y ),I= t X.L- (Va-1I)X2 

in which the x2-coefficient does not tend to 0. Thus Lst(f) does not converge to 
the Taylor polynomial of f. 

Thus in contrast to the one-variable case, the degree of differentiability needed 
to guarantee a positive answer to 1.1 may depend on the sequence of schemes. 

We shall give in the last section an example (Example 5.4) not satisfying (2.1) 
but for which convergence to the Taylor polynomial holds in general, for functions 
whose degree of differentiability is greater than d + 1. We provide also in our main 
theorem in section 3 an upper bound for the level of differentiability that may be 
necessary in order to get the convergence. 

Finally, let us mention an important class of arrays that reproduce the same 
continuity properties as for dimension 1. We briefly describe these arrays in R 2 (for 
notational simplicity) and explain the phenomenon. 
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Example 2.4. We work in R2'. Let d > 1 and for s = 1, 2, 3,. .. let tA and tB be 
two sequences of d + 1 pairwise distinct real numbers. Their index set is assumed 
to begin at 0. Next we define 

St {(tAitBj), ij+ j<d}. 
Then St is a unisolvent array of order d. Moreover if tA and tB tend to 0 as t -* oc, 
then L8, f converges to Tdf for every f of class Cd in a neighborhood of the origin. 

A Newton formula is available for the interpolants corresponding to this array 
(note that it is strongly dependent on the ordering of the sequences A and B). If 
f is defined in a neighbourhood of 0, we have (dropping the "t") 

Ls (f dx) = E aij (xi- AO) . .. (x1 -Ai-,)(X2- BO) . .. (X2 -Bj-1) 
i+j<d 

where the aid3's are bivariate divided differences defined as follows. The one di- 
mensional divided difference f(., X2) [AO,... , A] is a function of x2, say gi, then 
aij = gi [BO,... , Bj]. The two variables actually play a symmetric role. 

Therefore the claim on the convergence follows essentially as in the one-variable 
case. 

3. MAIN THEOREM 

We shall first define some other quantities attached to an interpolation scheme 
that will naturally come into play in our main Theorem 3.3. Let 

(3.1) S ={(al, Sl), ..., (ak, Sk)} 

be an interpolation scheme of degree d in R', we shall write a' C S and IS: 
max{jaili = 1, ... I k}. 

Definition 3.1. The order denoted by o(al)-of a" for S is defined by o(ai) 
max{ Ia! + 1, a C Si} and the total order of S is o(S) := EZk1 o(a'). 

Thus for example, if S is a unisolvent array of degree d, then its total order is 
T(d, n) while if S is only a Taylor scheme, its total order is d + 1. Actually we have 
the following simple 

Lemma 3.2. For every interpolation scheme S of degree d in RT we have d + 1 < 
o(S) < T(d,n). 

Proof. We use the notation (3.1) for S. To get the upper bound, it is obviously 
enough to prove that o(a') < #Si for every i. This follows readily from the simple 
inequality 

a,1 +a2+ *+ an + 1 < (a, + 1)(a2+ 1) ... (an + 1)) 

together with the observation that if a C Si with jai = o(a') - 1, then since Si is 
directed, contains at least (a, + 1) (a2 + 1) ... (an + 1) elements. 

Next, let us write di = o(ai) - 1. We prove that d1 + + dk > d from which 
the lower bound immediately follows. We have 

(d + n) < k 
=d + n? (n) ( di 

w hn (dc + + dk d + + dk+ n 

which implies d < di + + dk- F] 
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Note that the proof shows also that o(S) = d + 1 if and only if S is a Taylor 
scheme and o(S) = T(d, n) if and only if S is a unisolvent array of degree d. 

Theorem 3.3. Let St be a sequence of interpolation schemes of degree d in RT. 
We assume that for t large o(St) < 1. If the following condition holds 

(3.2) lal = d + 1 === lim HstXa = O. 
t-*oo 

then for every function f of class Cl-i in a neighborhood of the origin we have 

(3.3) lim Hstf =Tdf. 
t-oo 

The next lemma shows that the points in such sequences of schemes must tend 
to zero as t -* 0o so that the theorem deals indeed with Problem 1.1. It also shows 
that the statement of Theorem 3.3 is meaningful as soon as f is defined in any 
neighborhood of the origin. 

Lemma 3.4. Under the hypothesis of Theorem 3.3, we have limt, lStl = 0. 

When there is no danger of confusion, we write Htf for Hst f and define the 
coefficients tCfl(Xa) by 

(3.4) Ht(Xa) tCf(Xa)Xf. 
131?<d 

Thus, hypothesis (3.2) means that for every :3 and every a such that 131 < d and 
oal = d + 1, we have 

lim tCo(Xa) = O. t-oo 

Proof of 3.4. Supposing that ISt I is unbounded, there exists a subsequence of points 
atk C Stk such that 

lim latk = +oo. 
k-zoo 

In particular we may assume that latk > n. For every k we take an index j C 
{ 1,..., n} such that latk is maximal and therefore greater than 1. Then we have, 

(atk)d+ = Ht (Xd+l)(atk) - EI: tkC/(XJ)X(a) 
1,1<d 

=, at~kld+1 < E x l I 
l 

E tkCI3(Xj) L,31<d 

I ai | tk C X)|)0 (k oo) 
101 <d 

which is a contradiction. Consequently the sequence ISt is bounded. Now, using 
the same estimates again, we can show that ISt converges to 0. D 

Though it states a very simple and elementary algebraic property satisfied by 
Lagrange-Hermite interpolants, the next Lemma 3.5 is an essential element of The- 
orem 3.3. This property will be used in Lemma 3.6 to prove that, under the 
assumption (3.2), the convergence (3.3) holds for every polynomial. 
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Lemma 3.5. Let S be an interpolation scheme of degree d in R'. Then for every 
polynomial P and Q we have 

Hs(PQ) = Hs(PHs(Q)) 

Proof. The verification is straightforward. We assume that S is as in (3.1). Then, 
due to the uniqueness of the interpolation polynomial, it suffices to show that for 
every i C {1, ... , k} and every a c Si we have 

Da(PQ)(az) = Da(PHsQ)(az). 

This follows from the multivariate Leibniz formula, using the fact that Si is directed, 
for 

Dc (PHsQ) (az) = (c) D:3(HsQ) (a')DI-3P(ai) 

E (a)DI3Q(ai)Dc I3P(ai) 

Da(PQ) (ai). F 

Lemma 3.6. Under the hypothesis of Theorem 3.3, for every polynomial P, we 
have 

lim HtP Tdp. 
t-oo 

Thus for every m C N, Ht converges to Td as a sequence of (continuous) operators 
on Pn. 

Proof. Since HtP = P when the degree of P is not greater than d, it suffices to show 
that for every k > 1, every a such that I a = d+k we have Ht(Xa) Td(Xa) = 0. 
We will prove by induction on alo. For k 1, it is the hypothesis (3.2). We assume 
that the property is true for k < I and will prove it for 1 + 1. Thus with the notation 
(3.4), we have 

(3-5) (I61 <d d < Ia < d +l) == tc(Xa) -0 (t - oo). 

Now, take a' such that WI = d + ? + 1. Without loss of generality we may suppose 
that X0' = X1X0 with Jal = d + 1. Therefore, using Lemma 3.5, we have 

HtXa = Ht(X1Xa) 
= Ht(XlHtXo) 

= Ht (X E 
tC6(xx6) 

(3.6) 161bd 

:E tC6(Xa)Ht(XlX6) 
161 <d 

= E tC6(X0)XX6 + 5 {tc6(xa) E tCq(XiX6)X6}. 
161<d 161=d 161<d 

Now, using (3.5), all the coefficients in (3.6) tend to zero as t -* oo. 

The idea of the proof of Theorem 3.3 is quite simple. Roughly, we will replace 
the function f by a polynomial P = Pt which satisfies the interpolation conditions 
and has appropriate behaviour as a function of the nodes. In this case we will have 
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Ht(f) = Ht(P) and the latter can be handled with the previous Lemma. Here the 
polynomial P will be a Kergin interpolation polynomial (see also Theorem 6.1 [K]). 

We now recall briefly the main properties of Kergin interpolation that we shall 
need (see e.g [M]). 

Let Q be a convex subset of RT and Y := {yo,... ,d a subset of d + 1 not 
necessarily distinct points in Q. Then the Kergin interpolation polynomial Ky (f ) = 
K[y0,.. . , yd](f) (or Kf for short) is defined for every function f of class Cd on Q 
by the formula (using the directional derivative notation Duf (a) := Df (a).u) 

d d 

(3.7) Kf (x) = o D . ... DZi- l f (y + E tj (yi - yo))dm(t). 
i=O&i i=1 

(i) It is a polynomial of degree at most d that interpolates f at the point yZ. If 
some point is repeated, say Yi three times, we have DJf(y1) = Di(Kf)(y1) 
for j = 0,1,2 where DJf(y1) denotes the (total) j-th derivatives of f at y1. 
In particular when all the points coincide then Kf is the Taylor polynomial 
of f to the order d. 

(ii) If f is of the form f (x) = g((x, z)) with g a function of one variable, then 

K[yo X.. ,d] (f, x) = H[(yo, z), ..., (yd, Z)](g, (X, Z)). 

This is the fundamental property of Kergin interpolation. 
(iii) It follows from (3.7) that K[y, y,... , yd] (f) is a continuous function of the 

points y . 
(iv) Kf is independent of the order of the points. 
(v) If {wi,i = 0,.. .,k} c {yJj = 0, ..., d},then 

(3.8) (K[w0, . ..X Wk] o (Ky(f)) = K[w0, ... Xwk](f) 

for every f of class Cd on Q. 

Proof of 3.3. Let f be a function of class Cl- in some neighborhood Q of the origin 
that we may suppose to be convex. We shall define a subset Yt of O(St) points in 
Q as follows: a C Yt if a C St and furthermore it is repeated o(a) times. Thus we 
have indeed #Yt = eaESt o(a) = o(St). 

Let us consider the Kergin interpolation polynomial Ky, f (or Kt f ). Its degree is 
at most O(St) -1. For t large enough, this polynomial is well defined since O(St) < 1 
and f is 1- 1 times continuously differentiable. Actually, this will be the only point 
where the full smoothness of f will be used. Now the polynomial Kt satisfies 

Dif(a) = DiKt(f)(a) (a C St; 1 < j < o(a)-1) 

so that 

(3.9) Htf = Ht(Ktf). 

Therefore we have 

(3.10) Htf - Tdf = [Ht(Ktf) -Td(Ktf)] + [Td(Ktf) _ Tdf]_ 

We shall prove that 

1. limtO, Td(Ktf) = Tdf; 

2. limit, 0 Ht(Ktf) -_Td(Ktf) = 0. 
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Let Wt be a subset of Yt consisting of (d + 1) points (by Lemma 3.2 #Yt > d + 1). 
Then, by Lemma 3.4, all the points in Wt tend to 0 as t -* oc. Therefore, due to 
the known continuity properties of the Kergin interpolant, Kt := Kwt converges 
to Td as a sequence of operators on Pn7 for each m > d. On the other hand, again 
by Lemma 3.4 the sequence Ktf is bounded in P1-j ( see the formula (3.7) for 
Kergin interpolants). Consequently limtb,0 Td(Ktf) -kt (Ktf) 0. Now, using 
that Wt C Yt and property (3.8) we get 

(3.11) Td(Ktf) df = Td(Ktf) - kt(Ktf) + kt(Ktf) - Tdf 

= [Td(Ktf) - kt(Ktf)] + [ktf - Tdf] 

But both terms in parentheses above tend to 0 so that the limit (1) holds. 
The limit (2) follows similarly from the boundedness of the sequence Ktf in 'Pl- 1 

since, by Lemma 3.6, Ht converges to Td as a sequence of operators on 7p91_1. The 
theorem is proved. E 

The conclusion of Theorem 3.3 is not valid, in general, if f is only of class Cd+1. 

Example 5.1 is a specific sequence of schemes where the degree of differentiability 
required in Theorem 3.3 is optimal. 

We note that, in the particular case of a sequence of unisolvent arrays, the Kergin 
interpolants that are used, in an essential way, in the proof could be replaced by 
the interpolation polynomials exhibited in Example 2.4. Precisely, working in R', 
if St := falt,... , a7't} we can use in place of Ktf the interpolation polynomials (of 
degree T - 1) constructed from the sequences 

tA := {ait, . . ,alt} and tB := {al)t ,al-t, . alt 

However these polynomials are not well adapted for use in the case of general 
Lagrange-Hermite schemes. 

In the next section, we shall see that, with more computations, it will be possible 
to use the proof of Theorem 3.3, to obtain specific estimates on the way that the 
quantity 

(3.12) Ms := sup{jH5s(Xa)jj, Jal = d + 1} 

bounds the approximation error Jj - Tdf11. 
An easy generalization of Theorem 3.3 (but less precise) is the following: Let St 

be a sequence of schemes of degree d and of total order not greater than 1 and let 
T be another scheme of same degree. Then if Hst P converges to H- P for every 
monomial P of degree d + 1, we have as well 

lim Hs, f =H, f 
t-x 

for every function f of class Cl+o(J >-1 on a convex open set containing all the nodes 
in the St and T. The proof can be carried out as for 3.3 but in considering the 
Kergin interpolation polynomials Ky, with a C Yt if a C St or a C T, and in each 
case a is repeated o(a) times (if a belongs to both schemes, we take the largest 
order). The end of the proof is even simpler for the second term in the right-hand 
side of (3.10), in which Tdf is replaced by He1f, now vanishes. 

Finally, we note that the number of "test" functions in hypothesis (3.2) of The- 
orem 3.3 cannot be reduced, in general, as Example 1.2 shows. 
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4. QUANTITATIVE ESTIMATES 

For an m times continuously differentiable function f on a neighborhood of a 
compact set K, we define the semi-norm 

Hf rnm,K= SUp {sup HIIDif(x)HII} 
O<j<m XEK 

where I11 11 is the standard norm for j-multi-linear forms (when RTh is endowed with 
the norm xI). The purpose of this section is to study the following 

Problem 4.1. Let S be an interpolation scheme of degree d in RTh, Cv(S) denotes 
the convex hull of the set formed of nodes in S and the origin, and let f be a 
function of class C' in a neighborhood of Cv(S). Find a bound for I HHsf - Tdf I loo 
that makes use only of Ms (see (3.12)), |S|, and I If H 0,(s) = I If I [o(s),cv(s) 

We will assume that 

(*) Ms < 1 and USE < 1. 

We shall state the estimates with the Landau "O" notation. If the constants in- 
volved depend only on, say, d and n, we will write Od,n* 

We have 

Theorem 4.1. Let S be an interpolation scheme of degree d in RT, of total order 
1 and satisfying (*). Then for every function f of class C' in a neighbourhood of 
Cv(S) we have 

I IHsf _ Tdf H loo = O(|SI + Ms). I If 11. 

To prove it, we shall just examine in detail each term appearing in the proof of 
Theorem 3.3. Thus Lemma 4.2 is a quantitative version of Lemma 3.6 and Lemma 
4.3 establishes some further properties of Kergin interpolation. It seems to be of 
interest in itself (see also [W] and [SX] ). 

Lemma 4.2. Let S be an interpolation scheme of degree d satisfying (*) and m > 

d + 1. Then for every polynomial P C Pnm we have 

|HsP - TdPllx <? Od,m,n(MS>)-H PK [C 

Proof. The result is an easy consequence of the following. Let k > 0, we have 

maxl/31=d+k+1 IIHs(X)3)11 < Mk where Mk is the sequence defined recursively by 

MO := Ms and Mk+1 := UMk with p := 1 + T(d - 1, n). This estimate can be 

proved by induction using formula (3.6) (in which we drop the "t"). To make this 

clearer, if X: = X1Xa with alo = d + k, then the coefficient of X6 in HS(X'3) is 
given by 

E C6(X)Cn(X1X6) -2 )(X) or only EC(X)Cn(X1X6)1 
161=d 161=d 

according as &1 > 1 or not. Therefore we deduce 

IHs(X'3)oo ? ( E MsMk) + Mk < Mk+1. g 

161=d 
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Lemma 4.3. Let Y {yo,... I ym} be a subset formed of m + 1 points in RTh. We 
set JYJ := Max {lyl,i = 0,...,m}. Then for every function f of class Cm+' on a 
neighborhood of Cv(Y) we have 

IlKy(f) -Tmf loo ? Om<n0mYD.H1f 1m+i. 

where I If I nm+i = I I f I Im+i,Cv(Y) and as above Cv(Y) is the convex hull of Y U {O}. 

Proof. Since the polynomials Kyf - Tmf (as well as the polynomials Qc, defined 
below) have real coefficients, we may consider them as polynomials of n complex 
variables. Let E :I= {z = (Z1i... Zn), IziI < 1, i = 1,...,n} be the unit polydisc 
in Cn. Here Izi is the modulus of the complex number zi. We shall prove that 

(4.1) max |Ky(f, z) -Tm(f, z) I< Omnd (IyDI)IIf I Im+1 

from which, using the Cauchy inequalities (see e.g. [H, 2.2.7]), the estimates to be 
proved follow. Just to shorten somewhat the formulas we shall write for t C Ai, 

Ri(t) := y0 + Ztj(yj - y0) C Cv(Y). 
j=1 

First step. There exist polynomials Qc, such that 

(4.2) Ky = f (y0) +E E {JDaf(Ri(t))dm(t) }Qa 
i=1 jal=i i 

Furthermore the polynomials Qa are defined, when jal = i, by the relation 

(4-3) (x - y , A) ... (x 8- y A)i E Q ,(x)>a 
Ial=i 

This formula is known (see [B, (3.4.2)] or [C, Lemma 4.3]). The existence of the 
polynomials Q, follows immediately from the formula (3.7) and that they verify 
the formula (4.3) can be seen on applying (4.2) to functions of the form f = 
g((x, A)) taking into account the fundamental property of Kergin interpolants and 
the classical one-variable Newton formula. 

Second step. We claim that for every z E IP and for jal = i > 1 we have 

(4.4) IQa (z)I < (n + IYI)', 

IQa(z) - z`l < iIYI(n + IYf)-l. 

For w a complex number and A E Cn, we let 

pA (w) (w - (y0, A)) ... (w - (yil, A)) 

then we have, for IwI < n, A E P 

IPA(W) - wI < E (;)(IYl)i-iij = (W + y|)i - W < ilYj(n + IYI) 

j=()I 

Now setting w = (z, A) we see that IwI < n whenever z and A belong to IP so that 

I E (Qa (z) - z )AI = IPA((Z, A)) - (z, A)iI < iIYI(in + YI)i-l 
kIa=i 

Using the Cauchy inequalities we obtain the second estimate in (4.4). The first one 
is proved similarly. 
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Conclusion. 

Ky (f, z) - Tm (f, z) 

= f(y() - f(0) + E E {J [Dcf(R,(t)) - Dcf(0)] dm(t)Q,(z) 
i=1 Ial=i Ai 

+ Dcf!(0) (Qa(Z)- ) }' 

whence, using (4.4), the mean value theorem, and that m(z\i) = i, we obtain for 
z E AD 

Ky(f,z) - Tm(f,z)X 
m If.Il 

<Yl |Hf HII + SES IlEi+' JYI(n + IY)i + |f~L Y(n + IYI) i! ~~~a!iY(n y)l 
i=1 Ial=i 

< IY| IIfIIm+i (1 + n|YI)e -(n+II) Omn(lYl)llf Im+1 

and the lemma follows. C 

Proof of 4.1. We use the notation (3.1) for S and the same auxiliary interpolation 
polynomials as in the proof of Theorem 3.3. Namely, with the same notation as 
there (dropping the "t"), K := Ky and K Kw. Then we have, see (3.10) and 
(3.11) 

Hsf _ Tdf = [Hs(Kf) - Td(Kf)] + [Td(Kf) - k(Kf)] + [Kf _ Tdf] 

whence, by Lemmas 4.2 and 4.3 

1IHsf - Tdf Hlo 

(4.5) < IIHs(Kf) -_ d(Kf)lH0 + 11Td(Kf) - k(Kf)llHo + lKf - Tdf H00o 
< O(Ms).-lKflloc + O(CSD).(HlKfIld+1 + Hf lld+l1H). 

Thus it remains to verify that I IKf I Ioo and I IKf I Id+1 are both O(I If I I1). Using (4.2), 
it is easily seen that IIKf HOG = O(Hf HI -i) and IIKfIId+1 = O(H fHI'), we shall omit 
the details. As for the precise computation of the constant, it suffices to note that 
the estimates IIQaIIoo < (n + IS ) I1 follow from the proof of Lemma 4.3 and that 

we could prove along the same lines that IIQa2II = IIQaIId+ < Ia I!(n + IS ) lI. D 

We conclude this section by pointing to a bound for ISI in terms of Ms that was 
more or less apparent in Lemma 3.4. Let us assume e.g. that a E S ==> al < 1/2, 
then for a E S and j E {1,... , n}, we have, again with the notation (3.1) 

ajld+l =IHs(Xid+1a)J < Ms A aa < Ms.2n 

S1M 1<d 

ISI < l n2 d+l. MSd' 
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5. Two EXAMPLES 

Example 5.1. We shall work in R2 with coordinates (x, y). Let a = (a,, a2) and 
b = (b1, b2) E R2. For every function f defined, and with appropriate derivatives at 
a, b we look for a polynomial p of degree 2 satisfying the following six conditions: 

p(O) =f(0), ap (0) = f(0), -p(0) = af(0), 
(5.1) ax Ox Oy O9y 

f(a)=pa(a), P(a)= af(a), f(b) =p(b). 

In other words, we are considering the interpolation scheme of degree 2 in 1R2 (and 
p = Hs(f)) defined by 

(5.2) S := {(0 {(0 0)(1, 0), (0, 1)}); (a, {(0, 0), (1, 0)}), (b, {(0, 0)})}. 

Let us first study under what conditionss, (5.2) is really a well defined interpolation 
scheme. Let 

p(X, y) = C1 + C2X + c3y + C4X2 + C5Xy + C6y2, 

then the coefficients ci = ci(f) are required to satisfy 

/1 0 0 0 ? C / f(0) 
0 1 0 0 0 ? C2 o/0x(0) 
0 0 1 0 0 ? C3 - /0Oy(O) 

1 a, a2 

ab2 alb 
a2 f (a) 

I 2 ~ ~~ 
2 

1= I 1 0 2a1 a2 f C5 of /0x(a) 
I1 bi b2 bl2 bl b2 b2 , C62 f (b) 

Therefore we obtain immediately 

Property 5.2. (5.1) is an interpolation scheme of degree 2 in 1R2 if and only if 

a2 a1a2 a2 
V = V(a,b) := 2a1 a2 0 $& 0. 

b2 bi b2 b2 

We shall now consider the family of scheme St (for notational convenience, we 
shall consider here t '- 0) on taking 

(5.3) 3- 
~~a, = at := t-i, bi = bt=o 1 a a:=a, 1lb:tl 

(5.3) t 
Ia2= a2 := tla2, b2 = b2 :=02 

where -a = (l,a2), b = (b1,b2) and a > 0 will be fixed later. 
We note that with these definitions, the determinant 

V = 2ala 2bib2 - a3b2- a2 a2b2 

is homogeneous of degree (2 + 3a) in t, i.e., 

(5.4) V(a, b) = t a V(d, b). 

We now investigate the condition (3.2) of Theorem 3.3. For this interpolation 
scheme, we just have to study if, for the polynomials q(x, y) = x3, y3, x2y, xy2, the 
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three coefficients 

1 q(a) ala2 2 1 a2 q(a) a2 
c4(q) o &q/&x(a) a2 0 ;c(q) v a- 2ai &q/zx(a) 0 

f (b) bjb2 b 2 V b2 q(b) b2 

1 al ala2 q(a) and c6 (q) = - 2ai a2 &q/&x(a) 
V b 2 bjb2 q(b) 

tend to 0 as t approaches 0 (cl, c2, c3 being identically zero). 
We can verify that the numerators of C4, C5, C6, say D4, D5, D6 are all homoge- 

neous in a power of t. This power is indicated in the following array: 

D4 D5 D6_ - 

(5x6) X3 t3+ 3 t4+2a t5+t 
X 2y t2+4a t:3+:3 t4+2a 

XY2 tsa+ 1 t4ca+2 t 3+ 3 

y2 t6 ts+1 t2+4a 

We can now prove the 

Proposition 5.3. Let us consider the family of schemes St in which a, -a and b 
are fixed in order that 

(i) a E (3/2, 2); 
(ii) V(a, b) 74 0 (see (5.4)), ai 1 O. a0 7i b 1 

(iii) The coefficient D6 for x is zero for t = 1 (and therefore for every t), specif- 
ically, this means that one has 

a, bi {-a, b2 + 2ad a2b, - a2b,} = 0. 

Then conditions (3.2) of Theorem 3.3 are verified. Consequently, since o(St) = 5, 
for every function f of class C4 in a neighborhood of the origin we have 

lim Hs, f = T2f. 
t-() 

Furthermore, the conditions are optimal in the sense that one can find functions of 
class C3 for which the convergence does not hold. 

Proof. First we note there exist points -a and b satisfying (ii) and (iii). One can 
take e.g. al = 1,a2 = 2,bj = 2,b2 = 0. Now, by (5.4) and (5.6), the 3 x 4 = 12 
coefficients c, = DJ1V are homogeneous in various powers of t. When a C (3/2,2) 
we easily check that all of these powers are > 0 with only one exception, the one 
in the c6 coefficient for x3. However, by (iii), this coefficient is constantly equal to 
zero. Therefore we can conclude that Ms, tends to 0 as t -- 0 so that Theorem 3.3 
applies. 

As for the optimality of the required smoothness, let us consider the function f 
defined by 

(5.7) f (x, y) = xA 

where A c (3, 2a) and A is a rational number of the form P with p, q odd. Then 
q 

f c C3(1R2). Now, the coefficient c6 for f is of the form 

(f U( 1 t2+A+t 
C6 = C6(f) := V() , b) t2+3 
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with 
-2 -2 2-al a2 A a1 ja2+a a1a2 L (A) =-b2 -b b- a, - b2 b b| AlaIA-l + a1 a1a2 u(A) -2, L 2-a a2 

Since V(T, b) 74 0 the three 2 x 2 determinants above cannot all vanish. Hence, 
since al 74 0 and ad 74 bi, u(A) has only finitely many roots. Therefore one can find 
a rational A of the form indicated such that c6 74 0 and is therefore unbounded as 
t -> 0o. Consequently, Hst f does not converge to T2f (= 0) as t _> 0. El 

Example 5.4. Using the same idea as the previous example, we construct a family 
St (t -* 0) of unisolvent arrays of degree 2 in R2 of the form At(S) which violates 
the hypothesis of Corollary 2.2 but satisfies condition (3.2) of Theorem 3.3. Hence 
the convergence to the Taylor polynomial is verified for functions of class C5 in a 
neighborhood of the origin. In a particular case, we shall exhibit a function of class 
C3 (here, d = 2 and 3 = d + 1) for which Lst 74 Tdf. 

Let us take a unisolvent array (to be fixed later) 

S l{al2 a6} 

and 

(5.8) St={afa , a2 ,a?6}:=At(S), with At= (O tx) 

where a is again to be fixed later. 
We write 

Lstf :=c i+C2X+c3y+c4X2 +C5XY+C6Y2X 

as, in 5.5, the coefficients c. = c,(f) are given by the usual Cramer formulas. For 
instance, we have, dropping the "t", 

1 a{ cl (a1)2 f(a1) (a' )2 

1 1 a2 a2 (a2)2 f(a2) (a2)2 

C5 
= 

VDM(a1,... a6)................................ 
. 

................................ 

1 a6 a6 (a6)2 f(a6) (a6)2 

Now the Vandermonde VDM(a1,.. ., a6) is homogeneous in a power of t, namely 

(5 9) VDM(al, ... a6 = 44VDM(-al, a6 

and similarly for the polynomials q(x, y) = x3, y3, x2y, xy2 the different numerators 
(say DO) of the coefficients c, are homogeneous in a power of t. This power is 
indicated in the next array. 

D_ D2 D3 D4 D5 D6 

(5 10) X | t7+4 [ t6+4a {t7+3a t 5+4 { t6+3 a t7+2a 

2 t2Y t6+5 t4+5a t+4 t546+3a 
XY2 t5+6a t4+6 t5+5 t3+6 t4+5 t5+4a 

y 
3 4+7a t3+7a t4+6a t2+7a t3+6a t4+5a 

Proposition 5.5. Let us consider the family St (t -> 0) of unisolvent arrays of 
degree 2 in which a, -a .. , a6are fixed in order that 
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(iii) The coefficient C6i for q(x, y) = x is zero for t = 1 (and therefore for every 
t). 

Then the family St satisfies the condition (3.2) of Theorem 2.3 but not the condition 
of 2.2. 

Proof. Let us first prove that there exist points satisfying the required conditions. 
Let us take for example 

a = d =a2 =0; a=a; = =a =0; 

then a simple calculation shows that 

11 0 0 0 0 0 
1 2 0 (- 2)2 0 0 

VD(1, ... ,a 0 (a ) 0 0()2 21 d& 0 0 al)2 

1 a a4 (al5)2 a (a4)2 

1 ; a' (a-5)2 a.)f (a-)2 2s_ 1 _ _2_:_d 2 : 

6d6- --)-12235d - 3 
=2 2 >a2 a)a2) ala, 1 a,- 

which does not vanish if 

(5. 1 1) a -; d2a6; a, 74 adl; a2, -a26,a -, al, -al + 

So we fix d", a2 -a3,-a5 in order that (5.11) holds. Next, the coefficient D6 
for x3 is, as a function ofa,, a cubic polynomial whose leading coefficient is 
(-62)ja-laI(- a ) which by (5.11) is not zero. We can take for a, any real 
root of this polynomial. (It is easily verified that this polynomial has always the 
root 0.) We have thus constructed an array satisfying (ii) and (iii). 

Now, under hypothesis (i), all the powers (in t) of coefficients c-(q) are positive 
for q(x. y) = x3, x2y,xy2. y3 except the coefficient (:; for x3 which vanishes due to 
hypothesis (iii). The proposition is proved. 

Finally, note that, under assumption (i), we have, using the same norm as in 2.3, 
IAJI;j:IlA- 112 = t3/t20 -+ oc as t -O 0 so that Corollary 2.2 does not apply. O 

Suppose that .aa..., 6) is an array of the form given in the previous proof 
(thus it satisfies the condition (ii) and (iii) in 5.5) and that furthermore da, is not 

LIt 5 3 -2 equal to , , a I or zero. Then we can find a function f of Class C;3 whose family 
of interpolants does not converge to T2f. Again we shall consider the functions 

f (Xy) = XA 

where A E (3, 2a) and A is a rational number of the form P with p, q odd. 
q 

The c(3 coefficient is of the form 

11 0 0 0 0 0 
1 al 0 (a2) 0 (-2)A 

~ 3 0 j2 0 1)\ 1 t-1?A+2o c _ (C1) di11a 0 (d I' 0 (al) I 

= c()(f) 0 2-" 0 0 0 VDAM t4+-1' 

|1 4ir ad (a)2 ala=- (a-5')x 

d1 Iat) af I-fi' -a ,)a (ant) 1 

Now we claim that we can find A of the previous form such that c6(f) does not 
vanish. Indeed, otherwise c1;(A) would vanish identically as an analytic function 
of A and in particular the coefficient of (a), in De, for xA would be zero which is 
impossible since the coefficient is the same as that for (a,) in D6 for x3 (except 
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for the power of t). Hence c6 is unbounded as t -> 0 which makes the convergence 
to the Taylor polynomial impossible. 

As to find a concrete example of points satisfying the required condition, we may 
take for example =1,= 1 so that 

D6(x 3) := 12a, a, -4a, + 2), 

and we choose for -a, a non-zero root of the quadratic polynomial above. 
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